167 research outputs found

    Dipole source analysis of auditory P300 response in depressive and anxiety disorders

    Get PDF
    This paper is to study auditory event-related potential P300 in patients with anxiety and depressive disorders using dipole source analysis. Auditory P300 using 2-stimulus oddball paradigm was collected from 35 patients with anxiety disorder, 32 patients with depressive disorder, and 30 healthy controls. P300 dipole sources and peak amplitude of dipole activities were analyzed. The source analysis resulted in a 4-dipole configuration, where temporal dipoles displayed greater P300 amplitude than that of frontal dipoles. In addition, a right-greater-than-left hemispheric asymmetry of dipole magnitude was found in patients with anxiety disorder, whereas a left-greater-than-right hemispheric asymmetry of dipole magnitude was observed in depressed patients. Results indicated that the asymmetry was more prominent over the temporal dipole than that of frontal dipoles in patients. Patients with anxiety disorder may increase their efforts to enhance temporal dipole activity to compensate for a deficit in frontal cortex processing, while depressed patients show dominating reduction of right temporal activity. The opposite nature of results observed with hemispheric asymmetry in depressive and anxiety disorders could serve to be valuable information for psychiatric studies

    Online 4D ultrasound guidance for real-time motion compensation by MLC tracking

    Get PDF
    PURPOSE: With the trend in radiotherapy moving toward dose escalation and hypofractionation, the need for highly accurate targeting increases. While MLC tracking is already being successfully used for motion compensation of moving targets in the prostate, current real-time target localization methods rely on repeated x-ray imaging and implanted fiducial markers or electromagnetic transponders rather than direct target visualization. In contrast, ultrasound imaging can yield volumetric data in real-time (3D + time = 4D) without ionizing radiation. The authors report the first results of combining these promising techniques-online 4D ultrasound guidance and MLC tracking-in a phantom. METHODS: A software framework for real-time target localization was installed directly on a 4D ultrasound station and used to detect a 2 mm spherical lead marker inside a water tank. The lead marker was rigidly attached to a motion stage programmed to reproduce nine characteristic tumor trajectories chosen from large databases (five prostate, four lung). The 3D marker position detected by ultrasound was transferred to a computer program for MLC tracking at a rate of 21.3 Hz and used for real-time MLC aperture adaption on a conventional linear accelerator. The tracking system latency was measured using sinusoidal trajectories and compensated for by applying a kernel density prediction algorithm for the lung traces. To measure geometric accuracy, static anterior and lateral conformal fields as well as a 358° arc with a 10 cm circular aperture were delivered for each trajectory. The two-dimensional (2D) geometric tracking error was measured as the difference between marker position and MLC aperture center in continuously acquired portal images. For dosimetric evaluation, VMAT treatment plans with high and low modulation were delivered to a biplanar diode array dosimeter using the same trajectories. Dose measurements with and without MLC tracking were compared to a static reference dose using 3%/3 mm and 2%/2 mm γ-tests. RESULTS: The overall tracking system latency was 172 ms. The mean 2D root-mean-square tracking error was 1.03 mm (0.80 mm prostate, 1.31 mm lung). MLC tracking improved the dose delivery in all cases with an overall reduction in the γ-failure rate of 91.2% (3%/3 mm) and 89.9% (2%/2 mm) compared to no motion compensation. Low modulation VMAT plans had no (3%/3 mm) or minimal (2%/2 mm) residual γ-failures while tracking reduced the γ-failure rate from 17.4% to 2.8% (3%/3 mm) and from 33.9% to 6.5% (2%/2 mm) for plans with high modulation. CONCLUSIONS: Real-time 4D ultrasound tracking was successfully integrated with online MLC tracking for the first time. The developed framework showed an accuracy and latency comparable with other MLC tracking methods while holding the potential to measure and adapt to target motion, including rotation and deformation, noninvasively

    A-RAF Kinase Functions in ARF6 Regulated Endocytic Membrane Traffic

    Get PDF
    BACKGROUND: RAF kinases direct ERK MAPK signaling to distinct subcellular compartments in response to growth factor stimulation. METHODOLOGY/PRINCIPAL FINDINGS: Of the three mammalian isoforms A-RAF is special in that one of its two lipid binding domains mediates a unique pattern of membrane localization. Specific membrane binding is retained by an N-terminal fragment (AR149) that corresponds to a naturally occurring splice variant termed DA-RAF2. AR149 colocalizes with ARF6 on tubular endosomes and has a dominant negative effect on endocytic trafficking. Moreover actin polymerization of yeast and mammalian cells is abolished. AR149/DA-RAF2 does not affect the internalization step of endocytosis, but trafficking to the recycling compartment. CONCLUSIONS/SIGNIFICANCE: A-RAF induced ERK activation is required for this step by activating ARF6, as A-RAF depletion or inhibition of the A-RAF controlled MEK-ERK cascade blocks recycling. These data led to a new model for A-RAF function in endocytic trafficking

    Competitive Tendering In The Netherlands: Central Planning Or Functional Specifications?

    Get PDF
    Institute of Transport and Logistics Studies. Faculty of Economics and Business. The University of Sydne

    Mood Modulates Auditory Laterality of Hemodynamic Mismatch Responses during Dichotic Listening

    Get PDF
    Hemodynamic mismatch responses can be elicited by deviant stimuli in a sequence of standard stimuli even during cognitive demanding tasks. Emotional context is known to modulate lateralized processing. Right-hemispheric negative emotion processing may bias attention to the right and enhance processing of right-ear stimuli. The present study examined the influence of induced mood on lateralized pre-attentive auditory processing of dichotic stimuli using functional magnetic resonance imaging (fMRI). Faces expressing emotions (sad/happy/neutral) were presented in a blocked design while a dichotic oddball sequence with consonant-vowel (CV) syllables in an event-related design was simultaneously administered. Twenty healthy participants were instructed to feel the emotion perceived on the images and to ignore the syllables. Deviant sounds reliably activated bilateral auditory cortices and confirmed attention effects by modulation of visual activity. Sad mood induction activated visual, limbic and right prefrontal areas. A lateralization effect of emotion-attention interaction was reflected in a stronger response to right-ear deviants in the right auditory cortex during sad mood. This imbalance of resources may be a neurophysiological correlate of laterality in sad mood and depression. Conceivably, the compensatory right-hemispheric enhancement of resources elicits increased ipsilateral processing

    ALCAM Regulates Motility, Invasiveness, and Adherens Junction Formation in Uveal Melanoma Cells

    Get PDF
    ALCAM, a member of the immunoglobulin superfamily, has been implicated in numerous developmental events and has been repeatedly identified as a marker for cancer metastasis. Previous studies addressing ALCAM’s role in cancer have, however, yielded conflicting results. Depending on the tumor cell type, ALCAM expression has been reported to be both positively and negatively correlated with cancer progression and metastasis in the literature. To better understand how ALCAM might regulate cancer cell behavior, we utilized a panel of defined uveal melanoma cell lines with high or low ALCAM levels, and directly tested the effects of manipulating these levels on cell motility, invasiveness, and adhesion using multiple assays. ALCAM expression was stably silenced by shRNA knockdown in a high-ALCAM cell line (MUM-2B); the resulting cells displayed reduced motility in gap-closure assays and a reduction in invasiveness as measured by a transwell migration assay. Immunostaining revealed that the silenced cells were defective in the formation of adherens junctions, at which ALCAM colocalizes with N-cadherin and ß-catenin in native cells. Additionally, we stably overexpressed ALCAM in a low-ALCAM cell line (MUM-2C); intriguingly, these cells did not exhibit any increase in motility or invasiveness, indicating that ALCAM is necessary but not sufficient to promote metastasis-associated cell behaviors. In these ALCAM-overexpressing cells, however, recruitment of ß-catenin and N-cadherin to adherens junctions was enhanced. These data confirm a previously suggested role for ALCAM in the regulation of adherens junctions, and also suggest a mechanism by which ALCAM might differentially enhance or decrease invasiveness, depending on the type of cadherin adhesion complexes present in tissues surrounding the primary tumor, and on the cadherin status of the tumor cells themselves

    Neural mechanisms of interstimulus interval-dependent responses in the primary auditory cortex of awake cats

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Primary auditory cortex (AI) neurons show qualitatively distinct response features to successive acoustic signals depending on the inter-stimulus intervals (ISI). Such ISI-dependent AI responses are believed to underlie, at least partially, categorical perception of click trains (elemental vs. fused quality) and stop consonant-vowel syllables (eg.,/da/-/ta/continuum).</p> <p>Methods</p> <p>Single unit recordings were conducted on 116 AI neurons in awake cats. Rectangular clicks were presented either alone (single click paradigm) or in a train fashion with variable ISI (2–480 ms) (click-train paradigm). Response features of AI neurons were quantified as a function of ISI: one measure was related to the degree of stimulus locking (temporal modulation transfer function [tMTF]) and another measure was based on firing rate (rate modulation transfer function [rMTF]). An additional modeling study was performed to gain insight into neurophysiological bases of the observed responses.</p> <p>Results</p> <p>In the click-train paradigm, the majority of the AI neurons ("synchronization type"; <it>n </it>= 72) showed stimulus-locking responses at long ISIs. The shorter cutoff ISI for stimulus-locking responses was on average ~30 ms and was level tolerant in accordance with the perceptual boundary of click trains and of consonant-vowel syllables. The shape of tMTF of those neurons was either band-pass or low-pass. The single click paradigm revealed, at maximum, four response periods in the following order: 1st excitation, 1st suppression, 2nd excitation then 2nd suppression. The 1st excitation and 1st suppression was found exclusively in the synchronization type, implying that the temporal interplay between excitation and suppression underlies stimulus-locking responses. Among these neurons, those showing the 2nd suppression had band-pass tMTF whereas those with low-pass tMTF never showed the 2nd suppression, implying that tMTF shape is mediated through the 2nd suppression. The recovery time course of excitability suggested the involvement of short-term plasticity. The observed phenomena were well captured by a single cell model which incorporated AMPA, GABA<sub>A</sub>, NMDA and GABA<sub>B </sub>receptors as well as short-term plasticity of thalamocortical synaptic connections.</p> <p>Conclusion</p> <p>Overall, it was suggested that ISI-dependent responses of the majority of AI neurons are configured through the temporal interplay of excitation and suppression (inhibition) along with short-term plasticity.</p

    GM-CSF Increases Mucosal and Systemic Immunogenicity of an H1N1 Influenza DNA Vaccine Administered into the Epidermis of Non-Human Primates

    Get PDF
    Background: The recent H5N1 avian and H1N1 swine-origin influenza virus outbreaks reaffirm that the threat of a worldwide influenza pandemic is both real and ever-present. Vaccination is still considered the best strategy for protection against influenza virus infection but a significant challenge is to identify new vaccine approaches that offer accelerated production, broader protection against drifted and shifted strains, and the capacity to elicit anti-viral immune responses in the respiratory tract at the site of viral entry. As a safe alternative to live attenuated vaccines, the mucosal and systemic immunogenicity of an H1N1 influenza (A/New Caledonia/20/99) HA DNA vaccine administered by particle-mediated epidermal delivery (PMED or gene gun) was analyzed in rhesus macaques. Methodology/Principal Findings: Macaques were immunized at weeks 0, 8, and 16 using a disposable single-shot particlemediated delivery device designed for clinical use that delivers plasmid DNA directly into cells of the epidermis. Significant levels of hemagglutination inhibiting (HI) antibodies and cytokine-secreting HA-specific T cells were observed in the periphery of macaques following 1-3 doses of the PMED HA DNA vaccine. In addition, HA DNA vaccination induced detectable levels of HA-specific mucosal antibodies and T cells in the lung and gut-associated lymphoid tissues of vaccinated macaques. Importantly, co-delivery of a DNA encoding the rhesus macaque GM-CSF gene was found to significantly enhance both the systemic and mucosal immunogenicity of the HA DNA vaccine. Conclusions/Significance: These results provide strong support for the development of a particle-mediated epidermal DNA vaccine for protection against respiratory pathogens such as influenza and demonstrate, for the first time, the ability of skindelivered GM-CSF to serve as an effective mucosal adjuvant for vaccine induction of immune responses in the gut and respiratory tract. © 2010 Loudon et al

    Phase Ia Clinical Evaluation of the Safety and Immunogenicity of the Plasmodium falciparum Blood-Stage Antigen AMA1 in ChAd63 and MVA Vaccine Vectors

    Get PDF
    Traditionally, vaccine development against the blood-stage of Plasmodium falciparum infection has focused on recombinant protein-adjuvant formulations in order to induce high-titer growth-inhibitory antibody responses. However, to date no such vaccine encoding a blood-stage antigen(s) alone has induced significant protective efficacy against erythrocytic-stage infection in a pre-specified primary endpoint of a Phase IIa/b clinical trial designed to assess vaccine efficacy. Cell-mediated responses, acting in conjunction with functional antibodies, may be necessary for immunity against blood-stage P. falciparum. The development of a vaccine that could induce both cell-mediated and humoral immune responses would enable important proof-of-concept efficacy studies to be undertaken to address this question
    corecore